Introduction

This article covers the data files of CLIO software version 4.0.
The variable types, native in Borland Pascal, can be summarized as follows:

Byte : unsigned 8-bit
Word : unsigned 16-bit
Integer : signed 16-bit
Longint : signed 32-bit
Single : floating point (single precision IEEE 754/854 standard)
Boolean : 8-bit ordinal 0 or 1
Char : 8-bit ASCII character
String : sequence of 8-bit ASCII characters preceded by its 8-bit size attribute

FFT files (“.FFT” extension)

WrHead = Record
Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
Programma : String[8]; {9 bytes - usually “CLIO”}
Release : String[4]; {5 bytes - software release}
Comm1 : String[40]; {41 bytes - comment}
Comm2 : String[40]; {41 bytes - comment}
Comm3 : String[40]; {41 bytes - comment}
Comm4 : String[106]; {107 bytes - comment}
end;
FFTText = Record
Titolo : String[8]; {9 bytes – file name}
Commento : String[50]; \{51 bytes – user input comment (with About)}
end;

FFTLocals = Record
 Fcamp : Word; \{2 bytes – sampling frequency\}
 Mode : MisUnit; \{1 byte – measuring mode (Volt, Pressure)\}
 MicASens : Single; \{4 bytes – A channel sensitivity\}
 MicBSens : Single; \{4 bytes – B channel sensitivity\}
 SensUnits : UnitsType; \{1 byte – sensitivity units (mV/Pa, dBV/Pa, dBspl/V)\}
 MicCal : Boolean; \{1 byte – microphone calibration switch\}
 FullScale : Single; \{4 bytes – top of screen value\}
 Channel : AcquiMode; \{1 byte – input channel (A,B,A-B)\}
end;

FFTSet = Record
 NumPoints : integer; \{2 bytes – FFT size\}
 Nbit : integer; \{2 bytes – FFT order\}
 NumAcqui : integer; \{2 bytes – number of input samples\}
 Average : boolean; \{1 byte – average mode switch\}
 NuAvgStop : word; \{2 bytes – number of target averages\}
 NumAverage : integer; \{2 bytes – number of averages performed\}
 Window : FFTWindowType; \{1 byte - type of window\}
 (Hanning,Hamming,Blackman,Bartlett)\}
 WindowState: boolean; \{1 byte – window mode switch\}
 IntTrg : boolean; \{1 byte – internal trigger switch\}
 IntTrgDelay : integer; \{2 bytes – internal trigger delay\}
 Off1 : boolean; \{1 byte – display 1 off switch\}
 Off2 : boolean; \{1 byte - display 2 off switch\}
end;

Graph1 = Record
 What : ChannelOn; \{1 byte – display 1 channel (A,B,A-B,A/B)\}
 Ykind : FFTYAxisKind; \{1 byte – display 1 function (Mag,Real,Imag)\}
 Yaxis : FFTYAxis; \{1 byte – display 1 y axis mode (linear,dB)\}
 Xaxis : FFTXAxis; \{1 byte – display 1 x axis mode (linear,logarithmic)\}
end;

Graph2 = Record
 What : ChannelOn; \{1 byte – display 2 channel (A,B,A-B,A/B)\}
 Ykind : FFTYAxisKind; \{1 byte – display 2 function (Mag,Real,Imag)\}
 Yaxis : FFTYAxis; \{1 byte – display 2 y axis mode (linear,dB)\}
 Xaxis : FFTXAxis; \{1 byte – display 2 x axis mode (linear,logarithmic)\}
end;

Disp1 = Record
 Fscale : Single; \{4 bytes – display 1 full scale value\}
 FscaleI : Integer; \{2 bytes – display 1 full scale index\}
 IncScale : Single; \{4 bytes – display 1 scale increment value\}
 IncI : Integer; \{2 bytes – display 1 scale increment index\}
 Span : Single; \{4 bytes – display 1 total span value\}
end;

Disp2 = Record
 Fscale : Single; \{4 bytes – display 2 full scale value\}
 FscaleI : Integer; \{2 bytes – display 2 full scale index\}
 IncScale : Single; \{4 bytes – display 2 scale increment value\}
 IncI : Integer; \{2 bytes – display 2 scale increment index\}
 Span : Single; \{4 bytes – display 2 total span value\}
end;
MaxIndex : integer;
end;

FFTOut.A = Array [0..FFTSet.MaxIndex] Of
{(4*FFTSet.MaxIndex) bytes – FFT channel A data}
 Complex = Record
 Re : Single;
 {4 bytes – real part}
 Im : Single;
 {4 bytes – imag part}
 end;

FFTOut.B = Array [0..FFTSet.MaxIndex] Of
{(4*FFTSet.MaxIndex) bytes – FFT channel B data}
 Complex = Record
 Re : Single;
 {4 bytes – real part}
 Im : Single;
 {4 bytes – imag part}
 end;

** The following part is present only in averaged FFTs.

NumAverage : integer;
end;

FFTVal.1.Data =Array [0..FFTSet.MaxIndex] Of
{(4*FFTSet.MaxIndex) bytes – FFT channel A average data}
 FFTData = Record
 Inst : single;
 {4 bytes – instantaneous value}
 Avg : single;
 {4 bytes – averaged value}
 end;

FFTVal.2.Data =Array [0..FFTSet.MaxIndex] Of
{(4*FFTSet.MaxIndex) bytes – FFT channel B average data}
 FFTData = Record
 Inst : single;
 {4 bytes – instantaneous value}
 Avg : single;
 {4 bytes – averaged value}
 end;

Total bytes count = variable.

** MLS files (“.MLS” extension)**

WrHead = Record
 Nome : String[11];
 {12 bytes – usually “AUDIOMATIC”}
 Programma : String[8];
 {9 bytes - usually “CLIO”}
 Release : String[4];
 {5 bytes - software release}
 Comm1 : String[40];
 {41 bytes - comment}
 Comm2 : String[40];
 {41 bytes - comment}
 Comm3 : String[40];
 {41 bytes - comment}
 Comm4 : String[106];
 {107 bytes - comment}
end;

MLSText = Record
 Titolo : String[8];
 {9 bytes – file name}
 Commento : String[50];
 {51 bytes – user input comment (with About)}
end;

MLSLocals = Record
 Fcamp : Word;
 {2 bytes – sampling frequency}
 Mode : MisUnit;
 {1 byte – measuring mode (Volt, Pressure)}
MicASens : Single; {4 bytes – A channel sensitivity}
MicBSens : Single; {4 bytes – B channel sensitivity}
SensUnits : UnitsType; {1 byte – sensitivity units (mV/Pa, dBV/Pa, dBspl/V)}
MicCal : Boolean; {1 byte – microphone calibration switch}
FullScale : Single; {4 bytes – top of screen value}
Channel : AcquiMode; {1 byte – input channel (A,B,A-B)}
end;
MLSSet = Record
dBRRange : byte {1 byte – amplitude scale range (20,10,5,2,1 dB/div)}
FreqStart : byte {1 byte – x-axis start frequency (20,200,2000 Hz)}
Smooth : byte {1 byte – smoothing factor (no,1/2,1/3,1/6,1/12 octave)}
PhKind : byte {1 byte – kind of phase data (Normal, Minimum, DelayFree))
NuAvg : integer {2 bytes – number of averages}
AvgMode : byte {1 byte – kind of average mode (Continuous, Manual)}
TimeW : byte {1 byte – time window (no, HalfHann, Hann, HalfBH, BH)}
BeginPoint : integer; {2 bytes – first sample of selected impulse}
EndPoint : integer; {2 bytes – last sample of selected impulse}
end;
MLSSinglePulse= array [0..16382] of single; {65532 bytes – impulse data}
*** = array [0..2] of byte; {3 bytes – reserved}
MLSXReal = array [0..4095] of single; {16384 bytes – FFT real part}
MLSXImag = array [0..4095] of single; {16384 bytes – FFT imag part}

Total bytes count = 98649 bytes.

Waterfall files (“.WTF” extension)

WrHead = Record
Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
Programma : String[8]; {9 bytes - usually “CLIO”)}
Release : String[4]; {5 bytes - software release}
Comm1 : String[40]; {41 bytes - comment}
Comm2 : String[40]; {41 bytes - comment}
Comm3 : String[40]; {41 bytes - comment}
Comm4 : String[106]; {107 bytes - comment}
end;
WTFText = Record
Titolo : String[8]; {9 bytes – file name}
Commento : String[50]; {51 bytes – user comment (input with About)}
end;
WTFSet = Record
Tot_Spec : integer; {2 bytes – total number of spectra}
End_Spec : integer; {2 bytes – last transform sample}
FrStart : integer; {2 bytes – start frequency}
Wtf_d : integer; {2 bytes – no care}
Wtf_f : boolean; {1 byte – smoothing switch}
end;
WTFSave = array [0..399,0..30] of byte; {12400 bytes – waterfall data}
Sinusoidal Frequency Response files (".FRS" extension)

WrHead = Record
Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
Programma : String[8]; {9 bytes - usually “CLIO”}
Release : String[4]; {5 bytes - software release}
Comm1 : String[40]; {41 bytes - comment}
Comm2 : String[40]; {41 bytes - comment}
Comm3 : String[40]; {41 bytes - comment}
Comm4 : String[106]; {107 bytes - comment}
end;
FRSText = Record
Titolo : String[8]; {9 bytes – file name}
Commento : String[50]; {51 bytes – user comment (input with About)}
end;
FRSLocals = Record
Fcamp : Word; {2 bytes – sampling frequency}
Mode : MisUnit; {1 byte – measuring mode (Volt, Pressure)}
MicASens : Single; {4 bytes – A channel sensitivity}
MicBSens : Single; {4 bytes – B channel sensitivity}
SensUnits : UnitsType; {1 byte – sensitivity units (mV/Pa, dBV/Pa, dBspl/V)}
MicCal : Boolean; {1 byte – microphone calibration switch}
FullScale : Single; {4 bytes – top of screen value}
Channel : AcquiMode; {1 byte – input channel (A,B,A-B)}
end;
FRSSet = Record
dBRange : byte {1 byte – amplitude scale range (20,10,5,2,1 dB/div)}
FrsFrRge : FreqRange {1 byte – frequency scale range (10-20K,100-20K,1K-20K,10-2K,10-200 Hz)}
FrsFreqRes: FreqRes {1 byte – frequency resolution (1/3, 1/6, 1/12, 1/24, 1/48 octave)}
StartF : Single {4 bytes – first measurement frequency}
StopF : Single {4 bytes – last measurement frequency}
FrsSpeed : Speed {1 byte – sweep speed (fast, mid, slow)}
Gtd : boolean {1 byte – switch for gated acquisition}
GtdAutoPh : boolean {1 byte – switch for auto phase}
GtdAutoPhFreq: Single {4 bytes – reference frequency for gated acquisition}
GtdAutoMtDel: boolean {1 byte – switch for auto delay}
GtdMtDel : Single {4 bytes – delay for gated acquisition}
GtdMtOn : Single {4 bytes – sampling time for gated acquisition}
THD : boolean {1 byte – switch for harmonic analysis}
THD2Dysp : boolean {1 byte – switch for second harmonic analysis}
THD3Dysp : boolean {1 byte – switch for third harmonic analysis}
THDRiseVal: boolean {4 bytes – dB rise for harmonic analysis}
end;
FrsArray = array [0..535] of SinStruct; {6432 bytes – measurement data}
SinStruct = Record
Val : Complex = Record {value}
Re : Single; {4 bytes – real part}
Im : Single; {4 bytes – imag part}
end;
Freq : Single {4 bytes – frequency}
End;

** The following part is present only when harmonic analysis is enabled.

THD2Array = array [0..535] of SinStruct; {6432 bytes – second harmonic data}
SinStruct = Record
 Val : Complex = Record {value}
 Re : Single; {4 bytes – real part}
 Im : Single; {4 bytes – imag part}
 end;
 Freq : Single {4 bytes – frequency}
End;
THD3Array = array [0..535] of SinStruct; {6432 bytes – third harmonic data}
SinStruct = Record
 Val : Complex = Record {value}
 Re : Single; {4 bytes – real part}
 Im : Single; {4 bytes – imag part}
 end;
 Freq : Single {4 bytes – frequency}
End;

Total bytes count = variable.

** Sinusoidal Impedance files (".IMP" extension)**

WrHead = Record
 Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
 Programma: String[8]; {9 bytes - usually “CLIO”}
 Release : String[4]; {5 bytes - software release}
 Comm1 : String[40]; {41 bytes - comment}
 Comm2 : String[40]; {41 bytes - comment}
 Comm3 : String[40]; {41 bytes - comment}
 Comm4 : String[106]; {107 bytes - comment}
end;
IMPText = Record
 Titolo : String[8]; {9 bytes – file name}
 Commento : String[50]; {51 bytes – user comment (input with About)}
end;
IMPSet = Record
 OhmMax : Single {4 bytes – maximum graph value}
 OhmMin : Single {4 bytes – minimum graph value}
 LinLogY : byte {1 byte – kind of Y axis (linear, logarithmic)}
 Auto : boolean {1 byte – switch for auto display parameters}
 IMPFrRge : FreqRange {1 byte – frequency scale range
 (10-20K,100-20K,1K-20K,10-2K,10-200 Hz)}
 IMPFreqRes: FreqRes {1 byte – frequency resolution (1/3, 1/6, 1/12, 1/24, 1/48 octave)}
StartF : Single {4 bytes – first measurement frequency}
StopF : Single {4 bytes – last measurement frequency}
FrsSpeed : Speed {1 byte – sweep speed (fast, mid, slow)}
Mode : ImpMode {1 byte – measurement mode (internal, constant I, con-
stant V)}
ResVal : Single {4 bytes – sensing resistor value}
end;

IMPArray = array [0..535] of SinStruct; {6432 bytes – impedance data}

SinStruct = Record
 Val : Complex = Record
 Re : Single; {4 bytes – real part}
 Im : Single; {4 bytes – imag part}
 end;
 Freq : Single {4 bytes – frequency}
End;

Total bytes count = 6774 bytes.

Sinusoidal Parameters files (“.SML” extension)

WrHead = Record
 Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
 Programma : String[8]; {9 bytes - usually “CLIO”}
 Release : String[4]; {5 bytes - software release}
 Comm1 : String[40]; {41 bytes - comment}
 Comm2 : String[40]; {41 bytes - comment}
 Comm3 : String[40]; {41 bytes - comment}
 Comm4 : String[106]; {107 bytes - comment}
end;

SMLText = Record
 Titolo : String[8]; {9 bytes – file name}
 Commento : String[50]; {51 bytes – user comment (input with About)}
end;

Parameters : Record
 Manufacturer: String[20] {21 bytes – Manufacturer’s name}
 Model : String[20] {21 bytes – Model’s name}
 Fs : Single {4 bytes – resonance frequency of driver}
 FsAdMa : Single {4 bytes – resonance frequency with added mass}
 FsKnVol : Single {4 bytes – resonance frequency with known volume}
 AdMass : Single {4 bytes – added mass}
 KnVol : Single {4 bytes – known volume}
 D : Single {4 bytes – diameter}
 Zm : Single {4 bytes – maximum impedance of driver}
 *** : Single {4 bytes – reserved}
 *** : Single {4 bytes – reserved}
 ZF1F2 : Single {4 bytes – impedance of driver at –3 dB frequencies}
 F1 : Single {4 bytes – lower frequency at –3 dB}
 F2 : Single {4 bytes – upper frequency at –3 dB}
 Re : Single {4 bytes – DC resistance of voice coil}
 Rms : Single {4 bytes – mechanical resistance of driver suspension}
Qms : Single {4 bytes}
Qes : Single {4 bytes}
Qts : Single {4 bytes}
Cms : Single {4 bytes – mechanical compliance of suspension}
Mms : Single {4 bytes – mechanical mass of diaphragm}
Bl : Single {4 bytes – magnetic flux density}
Vas : Single {4 bytes – volume of air with same compliance of suspension}

dBspl : Single {4 bytes – calculated at 1m with 2.83V}
L1K : Single {4 bytes – inductance at 1 KHz}
L10K : Single {4 bytes – inductance at 10 KHz}
Cas : Single {4 bytes – acoustical compliance of suspension}
*** : Single {4 bytes – reserved}
*** : Single {4 bytes – reserved}
*** : Single {4 bytes – reserved}
SD : Single {4 bytes – effective area of diaphragm}
*** : array[0..10] of Single {44 bytes – reserved}

End;

ParamIMPArray = array [0..535] of SinStruct; {6432 bytes – impedance data}
SinStruct = Record
 Val : Complex = Record {value}
 Re : Single; {4 bytes – real part}
 Im : Single; {4 bytes – imag part}
 end;
 Freq : Single {4 bytes – frequency}
End;

Total bytes count = 6962 bytes.

Sinusoidal Distortion files (“.DST” extension)

WrHead = Record
 Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
 Programma : String[8]; {9 bytes - usually “CLIO”}
 Release : String[4]; {5 bytes - software release}
 Comm1 : String[40]; {41 bytes - comment}
 Comm2 : String[40]; {41 bytes - comment}
 Comm3 : String[40]; {41 bytes - comment}
 Comm4 : String[106]; {107 bytes - comment}
end;

DSTText = Record
 Titolo : String[8]; {9 bytes – file name}
 Commento : String[50]; {51 bytes – user comment (input with About)}
end;

DSTData = Record
 THDFreq : Single {4 bytes – THD frequency}
 CCIFFreq : Single {4 bytes – CCIF frequency}
 Start : Single {4 bytes – Start voltage}
 Stop : Single {4 bytes – Stop voltage}
 *** : Single {4 bytes – reserved}
 *** : Single {4 bytes – reserved}
end;
Load : Single \{4 bytes – Load resistance\}
Steps : Single \{4 bytes – Number of steps\}
end:
DSTUnit : DSTUnitType \{1 byte – measurement unit (volts, watts)\}
DSTKind : DSTKindType \{1 byte – measurement kind (THD, SMPTE, DIN, CCIF)\}
DSTArray = array [0..400] of DSTVal; \{3208 bytes – impedance data\}
DSTVal = Record
 Lev : Single; \{4 bytes – level\}
 Dist : Single \{4 bytes – distortion\}
End;

Total bytes count = 3558 bytes.

Polar files (“.POL” extension)

WrHead = Record
 Nome : String[11]; \{12 bytes — usually “AUDIOMATICA”\}
 Programma : String[8]; \{9 bytes - usually “CLIO”\}
 Release : String[4]; \{5 bytes - software release\}
 Comm1 : String[40]; \{41 bytes - comment\}
 Comm2 : String[40]; \{41 bytes - comment\}
 Comm3 : String[40]; \{41 bytes - comment\}
 Comm4 : String[106]; \{107 bytes - comment\}
end;
POLText = Record
 Titolo : String[8]; \{9 bytes – file name\}
 Commento : String[50]; \{51 bytes – user comment (input with About)\}
End;
RTALocals = Record
 Fcamp : Word; \{2 bytes – sampling frequency\}
 Mode : MisUnit; \{1 byte – measuring mode (Volt, Pressure)\}
 MicASens : Single; \{4 bytes – A channel sensitivity\}
 MicBSens : Single; \{4 bytes – B channel sensitivity\}
 SensUnits : UnitsType; \{1 byte – sensitivity units (mV/Pa, dBV/Pa, dBspl/V)\}
 MicCal : Boolean; \{1 byte – microphone calibration switch\}
 FullScale : Single; \{4 bytes – top of screen value\}
 Channel : AcquiMode; \{1 byte – input channel (A,B,A-B)\}
end;
PolStruct = Record
 Freq : Single; \{4 bytes – measurement frequency (Hz)\}
 Step : Single; \{4 bytes – measurement angle step (degrees)\}
 Data : array [0..71] of Single \{288 bytes – polar data (dB)\}
End;

Total bytes count = 630 bytes.
RTA files (".PNK" extension in 3.21, "RTA" extension in 4.00)

WrHead = Record
Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
Programma : String[8]; {9 bytes - usually “CLIO”}
Release : String[4]; {5 bytes - software release}
Comm1 : String[40]; {41 bytes - comment}
Comm2 : String[40]; {41 bytes - comment}
Comm3 : String[40]; {41 bytes - comment}
Comm4 : String[106]; {107 bytes - comment}
end;
RTAText = Record
Titolo : String[8]; {9 bytes – file name}
Commento : String[50]; {51 bytes – user comment (input with About)}
end;
RTALocals = Record
Fcamp : Word; {2 bytes – sampling frequency}
Mode : MisUnit; {1 byte – measuring mode (Volt, Pressure)}
MicASens : Single; {4 bytes – A channel sensitivity}
MicBSens : Single; {4 bytes – B channel sensitivity}
SensUnits : UnitsType; {1 byte – sensitivity units (mV/Pa, dBV/Pa, dBspl/V)}
MicCal : Boolean; {1 byte – microphone calibration switch}
FullScale : Single; {4 bytes – top of screen value}
Channel : AcquiMode; {1 byte – input channel (A,B,A-B)}
end;
RTANuAver : integer; {2 bytes – number of averages}
RTAAvgMod = array [0..30] of single; {124 bytes – RTA data}
RTAAvgTotMod= single; {4 bytes – total level dB (linear)}
RTAAAvgTotMod= single; {4 bytes – total level dBA (A-weighted)}

Total bytes count = 468 bytes.

RT60 files (".T60" extension)

WrHead = Record
Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
Programma : String[8]; {9 bytes - usually “CLIO”}
Release : String[4]; {5 bytes - software release}
Comm1 : String[40]; {41 bytes - comment}
Comm2 : String[40]; {41 bytes - comment}
Comm3 : String[40]; {41 bytes - comment}
Comm4 : String[106]; {107 bytes - comment}
end;
T60Text = Record
Titolo : String[8]; {9 bytes – file name}
Commento : String[50]; {51 bytes – user comment (input with About)}
end;
T60Locals = Record
Fcamp : Word; {2 bytes – sampling frequency}
Mode : MisUnit; {1 byte – measuring mode (Volt, Pressure)}
MicASens : Single; {4 bytes – A channel sensitivity}

MicBSens : Single; {4 bytes – B channel sensitivity}

SensUnits : UnitsType; {1 byte – sensitivity units (mV/Pa, dBV/Pa, dBspl/V)}

MicCal : Boolean; {1 byte – microphone calibration switch}

FullScale : Single; {4 bytes – top of screen value}

Channel : AcquiMode; {1 byte – input channel (A,B,A-B)}

end;

T60SingState = array [0..7] of boolean {8 bytes – switch active for each measured octave}

For each measured octave the following data is appended

T60SinglePulse = array [0..16382] of single; {65532 bytes – measured octave impulse data}

T60NoCare = array [0..2] of byte; {3 bytes – no care data}

T60FileFCamp : integer; {2 bytes – measured octave sampling frequency}

Total bytes count = variable.

Leq files (".LEQ" extension)

LEQData : array[0..Samples] of single {4*Samples bytes – time history data}

WrHead = Record

Nome : String[11]; {12 bytes – usually “AUDIOMATICA”}

Programma : String[8]; {9 bytes – usually “CLIO”}

Release : String[4]; {5 bytes – software release}

Comm1 : String[40]; {41 bytes – comment}

Comm2 : String[40]; {41 bytes – comment}

Comm3 : String[40]; {41 bytes – comment}

Comm4 : String[106]; {107 bytes – comment}

end;

LEQText = Record

Titulo : String[8]; {9 bytes – file name}

Commento : String[50]; {51 bytes – user comment (input with About)}

End;

LEQLocals = Record

Fcamp : Word; {2 bytes – sampling frequency}

Mode : MisUnit; {1 byte – measuring mode (Volt, Pressure)}

MicASens : Single; {4 bytes – A channel sensitivity}

MicBSens : Single; {4 bytes – B channel sensitivity}

SensUnits : UnitsType; {1 byte – sensitivity units (mV/Pa, dBV/Pa, dBspl/V)}

MicCal : Boolean; {1 byte – microphone calibration switch}

FullScale : Single; {4 bytes – top of screen value}

Channel : AcquiMode; {1 byte – input channel (A,B,A-B)}

end;

LEQSet = Record

Mode : IntegrationType; {1 byte – kind of integration (slow, fast, impulse)}

TimeUnit : Char; {1 byte – ‘s’ per second or ‘m’ per minute}

dB : dBType; {1 byte – equal dB or dBA}

UnitPerDiv : integer; {2 bytes – number of units per time division}

StopTime : longint; {4 bytes – integration stop time in s}

CountPerSec : integer; {2 bytes – equal 8 (fast or slow) or 32 (impulse)}

End;
LEQValue : Single {4 bytes – final Leq value}
LEQMax : Single {4 bytes – maximum level}
LEQOvl : Boolean {1 bytes – switch active when overload occurred during measure}

Total bytes count = variable.

Oscilloscope files (“.SPE” extension)

WrHead = Record
Nome : String[11]; {12 bytes — usually “AUDIOMATICA”}
Programma : String[8]; {9 bytes - usually “CLIO”}
Release : String[4]; {5 bytes - software release}
Comm1 : String[40]; {41 bytes - comment}
Comm2 : String[40]; {41 bytes - comment}
Comm3 : String[40]; {41 bytes - comment}
Comm4 : String[106]; {107 bytes - comment}
end;
ScopeText = Record
Titolo : String[8]; {9 bytes – file name}
Commento : String[50]; {51 bytes – user input comment (with About)}
end;
Soglia : integer; {2 bytes – trigger level index}
AmpIndex : integer; {2 bytes – vertical amplification index}
TBIndex : integer; {2 bytes – time base index}
ScopeCh : ChannelOn; {1 byte – display mode (A,B,A-B,Dual)}
IntTrig : boolean; {1 byte – internal trigger switch}
IntTrigDly : integer; {2 bytes – internal trigger delay}
ScoS = array [0..510] of integer; {1022 bytes – channel a data}
ScoSb = array [0..510] of integer; {1022 bytes – channel b data}

Total bytes count = 2370 bytes.

‘CONV3TO4.EXE’ Translation software from release 3.21 to 4.00

The program CONV3TO4.EXE can be used to translate CLIO data files in the old 3.21 format to a format compatible with release 4.00. To avoid wrong results the following precautions have to be taken.

NOTE 1: The conversion program has to be saved in and run from the C:\CLIO40\ directory.

NOTE 2: Before running the conversion program perform the standard CLIO 4 system calibration.

The program directs the user with simple prompts while doing its job.